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Introduction

The N-agent optimal control problem considers a cooperative game of N weakly
interacting players over a finite horizon. Each player aims to minimize its
average running cost by selecting the transition rates at each step. Their actions
influence the empirical distribution of states and thus the costs of others.

However, as N grows large, the problem becomes technically intractable. Hence,
we approximate the N-agent optimal control problem by a Mean Field Control
Problem (MFCP). We consider a continuum of players traversing among
multiple states in continuous time and replace the empirical distribution by a
flow of measures. Therefore, we define it as an optimization problem over a
McKean-Vlasov process.

We solve MFCP numerically by an approximation method inspired from deep
learning. Our experiments demonstrate the evolution of the cost function and
the trend of its training loss. We prove that such numerical solution converges
to the true solution as the number of samples goes to infinity.

N-agent Optimal Control Problem

The N-agent optimal control problem involves a decision process with multiple
interacting agents. Each agent is associated with an individual cost function and
a strategy set. The players are targeting at minimizing the average cost.

We formulate the process (Xt) with state space [[d ]] on a simplex Sd . Denote
µN

t as the empirical distribution of the N agents at time t.
Transition dynamics:

P(X k
t+h = j | Xt = x) = βk(t, x; j)h + o(h) as h → 0+

Common costs:

JN(mN
0 , β) = 1

N

N∑
k=1

E

[∫ T

0
f (t, X k

t , βk(t, Xt ; ·), µN
t )dt + g(X k

T , µN
T )

]
We choose feedback controls β = (β1, . . . , βN) to minimize the common cost,
where f is the running cost of the stochastic problem and g is the terminal cost.
We derive the HJB equation for N-agent control problem as a first-order,
non-linear PDE on the (d − 1)-dimensional simplex.

However, as d increases, the "Curse of Dimensionality" prevents standard
numerical schemes, such as Monte Carlo methods, mesh-based algorithms, etc,
from solving the HJB equation in a tractable manner.

Mean Field Control Problem

We formulate the mean field control problem to approximate the collective
behavior in the N-agent optimal control problem. The strategy of each player is
only affected by the average density of other players but not by a particular
stochastic configuration of the system. Therefore, we reduce the computational
complexity of the problem significantly.

We formulate the process (Xt)t∈[0,T ] as

Therefore, we derive:
1. Transition: follows the McKean-Vlasov dynamics

P(Xt+h = j | Xt = i , µt = m) = αj(t)h + o(h) as h → 0+

2. Cost:

J(α) = E
[ ∫ T

0
f (t, Xt , α(t, Xt), Law(Xt))dt + g(XT , Law(XT ))

]
3. Value function: the optimal cost converges to V N as:

V = inf
α∈Ad

J(α), V → V N ∈ O(1/
√

N)

4. Hamiltonian: H(t, m, z) =
∑

i∈[[d ]] miH i(t, m, z), with

H i(t, m, z) = sup
a∈[0,M ], j∈[[d ]]\{i}

(
−

∑
j∈[[d ]]\{i}

αj(t)zj − f (t, i , a, m)
)

5. HJB equation: we only explore the derivative along the simplex in the
directions D i = (∂ej−ei)j∈[[d ]]:

− ∂tV (t, m) +
∑

i∈[[d ]]
miH i(t, m, D iV (t, m)) = 0,

V (T , m) =
∑

i∈[[d ]]
mig i(m)

We assume the Lipschitz continuity for α, ∇αf , and the uniform convexity for
f , g . Therefore, we characterize the value function V as the unique viscosity
solution of the HJB equation on the simplex.

Deep Galerkin Method

Deep Galerkin Method (DGM) is a mesh-free method merging Galerkin methods
and machine learning. DGM approximates the solution with a deep neural
network which is trained to satisfy the differential operator, initial condition, and
boundary conditions at randomly sampled spatial points. In this way, we convert
the PDE problem into a machine learning problem.
1. Neural network approximators: parameterized with θ: with total layers L,

activation function σ , weight Wi , bias vectors ci , and scalar weight α.

2. Loss function: We generate samples si = {(ti , mi), (τi , zi)} uniformly,
where (ti , mi) are from [0, T ] × Sd and (τi , zi) are from {T } × Sd .

3. DGM algorithm:

Numerical Results

We consider a quadratic running cost and a linear terminal condition. We apply
SGD optimizer to train the DGM network for 200 epochs with sample size
10000. We observe a roughly linear increase in runtime with d > 50.

We also illustrate the evolution of value function and training loss for dimension
d = 2. We observe the global minimum is achieved at (0.5, 0.5) and the loss
continues decreasing along the training time.

Thus, we conclude that our DGM algorithm is able to fully learn the MFCP and
achieves to generate a robust numerical solution for the PDE.

Theory Results

We establish a theoretical scheme for DGM by proving, as iterations → ∞:
1. The training loss of DGM converges to 0

2. The numerical solution of DGM converges to the true value function

Conclusion

We establish a novel deep learning method for solving high-dimensional HJB
equations on the simplex arising from MFCP. Our DGM algorithm achieves a
well-performed approximation to the optimal solution. We provide a theoretical
scheme to support its convergence to the true value.

For future work, we want to explore the Backward Stochastic Differential
Equations (BSDE), which is another deep learning method for solving
high-dimensional PDE, for its application on MFCP. We aim to relax the
regularity assumptions for the HJB equation and investigate the convergence.
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